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I. INTRODUCTION

In 1966 CERN decided to design a first superconducting beam transport element, a
quadrupole lens, with the aim of gaining operational experience with such magnets in
external beams of the Proton Synchrotron and of sponsoring European superconductor tech~
nology.

A collaboration between CERN, the Culham Laboratory and the Oxford Instrument Com-
pany (both of the latter being in Great Britain) has since been established, the proj-
ect being partially financed by the British Ministry of Technology..

This paper gives a theoretical amalysis of the quadrupole lens and describes a
full-scale, copper-wound pole model made at CERN with the aim of performing magnetic
measurements and of establishing the winding procedure and the mechanical comnstruction
in view of the four poles to be wound with superconductors.

II. THE ANALYTICAL DESIGN OF THE OQUADRUPOLE LENS

Several authors have considered the problem of obtaining accurate two-dimensiomnal
dipole, quadrupole — 2n pole fields in general — within a certain aperture by computing
the required current. density distribution around it. Grivet! has examined rectangular,
uniform current density configurations; Beth? has developed a method of best approxima-
tion for an ideal sine-like line-current distribution around a circular aperture, since
in any real case the current density and the coil height will be finite. The sine-like
distribution is approximated by a number of uniform current density steps, yielding the
required magnetic field, field gradient, etc. uniformity within the aperture.

The theory of the quadrupole lens under consideration is based on an independent
though similar approach.3'5 A finite current density and coil height around a circular
aperture had been assumed and the appropriate configuration for uniform current den-
sity, yielding the (dipole) quadrupole field, etc., with required precision computed.

We start with the vector potential A at point P (p,¢) of a line current +1 placed
at r,®P, according to Fig. 1. (ylindrical coordinates are used. :
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The vector potential at P is given by:

A=%2 In [r® + % - 2rp cos (-] M
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The expression for the vector potential can be expressed as the following trigonometric
power seriesv: ) .
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for a =p/r > 1.

For a symmetric arrangement of four lime currents according to Fig. 2, the vector
potential at P(p,¥) is:

5 ; J2k-1
$=4 / g7 osim [k - o] sin [(2k -1)¢] &)
=1 '

for a = p/r < 1.

If, according to Fig. 3, four symmetric sector coils with uniform current density j
are assumed so that dI = j r dr dy, and if the sectors cover the angular region between
o and (n/2)- &, ete., and between the radii Rq and R, the vector potential A is given
by:

R

A = 2% (sin 2{)(cos 20) p° 1in E% +
1
T sin [(4k+2)y] cos [(4k+2)e] &kt2 { 1 1
*+ L 7 P ( ik T &k ) (6)
- 2k(bk + 2) R gl

From the vector potential the magnetic field components B

and BW can be obtained as
follows:

p

6. H.B. Dwight, Tables of Integrals and Other Mathematical Data (MacMillan, New York,
1955), Formula 418, p. 85.
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For | = 0, Eq. (7) yields the field By in the horizontal p-axis, and for | = m/4,
Eq. (8) yields the field By or By, respectively, Differentiating Egs. (7) and (8)
under these conditions one obtains for the field gradient: )

B R, S
gp=(TpP' = 4\ (cos 20) 1n =+
4=0 !
(4k+ 1) bk (11
+-§: 2X ) cos [(4k + 2)a] p ( AN ik ) (9
R Ry
a8 R
2
x=p
- k
) (-1 cos [(4k + 2)o] 4k f 11
2 Z K4k + 2) (4 + 1) o ( Gk " Ak ) . (10
1 2

Equations (9) and (10) are very convenient for the design of a quadrupole lens: the
first constant term corresponds to the wanted comstant gradient, the sum to the error
terms. By putting o = 159, which in accordance with Fig. 3 corresponds to 309 sector
coils, the first dodecapolar error term vanishes, and the gradient error is mainly de-
termined by the 20th harmonic. A simple calculation shows that the same reasoning is
valid for sector coils between the angles og and (n/4)(ay - o), respectively, between
(m/2) - @y and (n/4) + (ay=- &) (see Fig. 4).

Two ways of eliminating both the 12th and 20th harmonic and of obtaining an even
more uniform gradient within the aperture are shown in Figs. 5 and 6. By introducing
an intermediate sector radius Ry — as shown in Fig. 5 -~ and by introducing the angles
o] and oy the g, gradieat (for example) becomes:
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Choosing oy = 9° and oy = 27° the 20th harmonic is eliminated. The 12th harmonic is
eliminated by choosing R; such that

cos54°(~—1—--1—>+coslez°(—l—-i)=o (12)
5 "% i "%
RY R R* R
i 2 1 i
or .
1.318 % = 0.88 %+ 0.432 L = m ;
R4 R4 Ré
i 1 2
4
_ j1.318
r, =, /12 . . (13)

If according to Fig. 6 two constant current density sectors with jy and j, are chosen,
and again o = 99, ay = 27°, Eq. (9) changes into:

R %
(g) =4, cos 2¢, In =+ 4(A, - A.) cos 2a, In =~ + -
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4k
G+ DHp” (1 1
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X { 4hy cos [(4k + Doy ]+ A(Az - Ay) ecos [(4k + Da,] } . (14)

The 20th harmonic is again eliminated with oy = 9° and @y = 27°; the 12th harmonic by
making:

© 4h] cos 54° + 40\, = X)) cos 162° = 0 (15)
... 1.318 _ . _ -
33,0588 =123 - (16)

When designing superconducting quadrupoles it is important to know the field inside
the winding in order to determine the mechanical forces and stresses as well as the
magnetic field outside the winding.

By a similar computation as before one finds for the magnetic field components

B. and BW inside the winding, i.e., for Ry < p < Ry:

p
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For the field outside the quadrupole (Rp < p < =) one finds:
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Similar expressions can be derived for dipole fields.3"3 1In order to obtain a field
uniformity required for high enevrgy physics beam transport and accelerator magnets,
the elimination of a larger number of harmonics than in the quadrupole case will be
necessary. When doing so, the method demonstrated approaches the analysis of Beth.

The CERN-Culham Laboratory quadrupole will be shielded by a magnetic steel cylin-
der, concentric with the longitudinal axis of the lens. Tt is useful to compute the
minimum radius rg of this cylinder as well as the effect of the imaged currents on the
field and the field gradient within the useful aperture.

Normally one would-choose p = rg such that the field components outside the quad-
rupole winding Bp and By [see Egs. (19) and (20)] are Bp, By < By, = 2 T.

The minimum cylinder thickness is found from Eq. (21):

dp
Amin B ( R R ) 3
sa p
k cos 2¢ (R - RA)
1 1
V) (21)
B 2
sat 2 rg
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In order to find the additional magnetic field (B)g or gradient (g); due to the mag-

netic screen for a single sector, uniform current density quadrupole, the coordinate
system shown in Fig. 7 will be used.

By imaging the winding radii on rg one obtains:

2 2

1 rS 7 rS
R, =7—, R, = (22)

1 R1 2 RZ

and for the imaged current density from:
jrdrdp=j3'r’ dr’ do’ . , 23)
rs 4 ‘

=3 (S5) . (24)

By a similar analysis as applied to the main winding field and gradient cémputa-
tion, one finds for:
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The gradient g according to Egqs. (9) and (10) is increased by

4

oo R, (&4 R
0 . 2 1 ]
(Ag)screen ~ - sin Zwo [ ( T ) - ( T ) J . 27)

ITI. THE QUADRUPOLE PARAMETERS

Based on the expressions derived so far and'taking into account the performance
obtained with the NbTi composite superconductor wound test coil, as stated in para-
graph 3 of the second part of this paper, written by D. Cornish, the nominal supercon-

ducting quadrupole parameters — without screening effect — have been chosen as follows
(see Fig. 8): ’
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Quadrupole length - 1 70.0 cm

Winding inner radius Ry 6.5 cm

Winding oﬁter radius . R, 14.8 em

Useful aperture radius Ry 5.0 ecm

Screen radius rg 33.5 em

Angles of sector coil ® 3 Oy 2°; (30-2)°

Over-all current density 3 1.15 x 10% A/em

Nominal current 1 820.0 A

Nominal field gradienat g 57.0 Vs/m> (5.7 kG/cm)

Maximum field in winding Bo lin 4.5 T (45 kG)
straight part

Maximum end field B ox 4.9 T

Maximum tangential and e % < 4.0 kg/mm2
compressive winding stress

Quadrupble inductance L 0.6 H

Stored energy A 200  kJ

Figure 9 shows the quadrupole gradient errors om the main axes.

IV. WINDING OF A FULL-SCALE UPPER POLE

In order to gain experiemce in winding the four poles with a rather unusual geom-
etry, a full-scale pole had been wound at CERN with a copper conductor of the final
1,52 X 4.05 mm? (0.06 in. X 0.16 in.) composite Cu-superconductor cross section.

Figure 10 shows the four pole cores and two of the 2° side plates. Before wind-
ing, the core is clad with-slotted, 1 mm thick vetronite (glass reinforced epoxy resin),
providing electrical insulation and efficient helium flow into the winding.

Since the conductors are wound in layers parallel to the 28° faces of the pole
cores, the layers start to depart from the inner cylinder at point P (Fig. 8). As
shown in Fig. 11 radial segments have been foreseen to guide the layers and determine
the 90° angle of a completely wound pole. 1In a similar way the upper circumferential
segments determine the winding outer radius.

The model pole proved to be very useful in studying and determining many details
of the winding technigque such as twisting the conductor in order to obtain smooth
layers in the coil straight parts, casting of the end helmet inner epoxy layers to
fit closely the coil end geometry and machining of the 2° 31de plates in strict ac-
cordance with the staircase-shaped straight coil parts.

The four coils will be slightly overwound so that when assembled with their side
plates and pressed with the outer cylinder — one half of which is shown in Fig. 12
with helium passages and grooved vetromite insulation at the inside — a compact arrange-
ment is obtained preventing relative displacements of individual conductors due to
thermal and electromagnetic stresses.
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Vector potential of line current

Fig. 1.
I(r,9) in P(P, V).
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Vector potential of four symmetric line

Fig. 2.
currents ‘£ I in P(p, V).
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¥y =45%0r X -line

.jededy

p-line

Fig. 3. Computation of field components By and By for constant

current density - j (A/em®) - sector coils between the
radii Ry and Ry and angles @ and (7/2) - o.

W= 452 line

Fig, 4. Same, but for sector coils between @ - @] and
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/ ap= 45%1ine

Fig. 5. Uniform current density sector coil quadrupole winding
with intermediate radius R;.

Fig. 6.  Sector coil quadrupole winding with two current
' densities j1 and jj.
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Fig. 7. Influence of concentric screen on uniform current
density sector coil quadrupole winding.

Ry=B5mm

Fig. 8. Main geometrical parameters of the CERN
superconducting quadrupole lens.
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4.%9.('/.)

Maximum gradient error
inside useful aperture

-6 L

Fig. 9. Relative gradient error of the CERN SC quadrupole lems.
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Fig..10. The four pole cores, top one clad with vetronite, and two 2° side plates.

Fig. 11. Winding of the full-scale model pole with copper.



i“ig. 12. Pole cores, 2° side plates and one-half of outside clamping cylinder.
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